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Abstract— Breast cancer is responsible for causing the greatest number of cancer-related deaths among women, impacting 1.5 million 
women every year (WHO). One way to reduce the number of deaths caused by breast cancer is to perform early diagnosis to detect the 
presence of a malignant tumor before the tumor gets too harmful. While there are several methods of diagnosing and testing a tumor, they 
all have their own sets of problems: they are time-consuming, expensive, and limited in their ability to diagnose a variety of tumors. In this 
study, a machine learning algorithm was developed to predict if someone has breast cancer. The diagnostic model uses ten different 
parameters received from a mammography, a screening, or an ultrasound test of the breast tumor to output its prediction. The model 
returns whether or not the tumor is malignant or benign and the accuracy of the prediction. Prediction accuracy was between 90 and 93%. 
In addition to machine learning, the Point-Biserial Correlation Coefficient was used in conjunction with a t-test to examine the strength of 
association between each of the ten features and malignancy. An app was that utilized the machine learning algorithm was developed to 
provide breast cancer specialists with a user interface for the diagnosis model. By using machine learning to assess a breast tumor, there 
will be a rapid, non-invasive, and inexpensive way to detect breast cancer. This algorithm can help thousands of women get early 
treatment and provide a way to address any type of binary classification problem. 

Index Terms— breast cancer, binary classification, decision tree, machine learning, prediction, malignancy, Point-Biserial Correlation  

——————————      —————————— 

1 INTRODUCTION                                                                     
reast cancer has been a prominent issue among women; it 
has been very difficult to determine whether a breast tu-
mor is malignant or not without being invasive and to 

address the cancer before it becomes too problematic. Cancers 
can result from alterations in genes encoding cellular signaling 
molecules, especially protein kinases (My Cancer Genome). 
Types of gene alterations that can result in cancers include: 
single nucleotide variants (point mutations), small duplica-
tions of consecutive nucleotides, insertions or deletions involv-
ing one or a few nucleotides, changes in exon or gene copy 
numbers, and structural variants in genetic material including 
translocations and inversions (My Cancer Genome).  

 
Current methods of tumor testing can identify mutations in 

tumor DNA. However, these methods generally come with a 
set of drawbacks. Almost all current methods of tumor testing 
can only detect a specific mutation; other mutations that may 
be present in tumor DNA cannot be detected (My Cancer Ge-
nome). Such methods are limited in the types or number of 
mutations that can be detected in tumor DNA. They can also 
be labor intensive and/or expensive, often involving the use 
of highly sophisticated technology (My Cancer Genome). 
Completion of diagnosis can take anywhere from 2-3 days to 
several weeks, and such tests also have a possibility of false 
negatives and false positives (My Cancer Genome). 

Early diagnosis of breast tumors can help doctors to pro-
vide a mostly accurate assessment of a breast tumor to their 
patients. The most common method of diagnosing breast tu-
mors is mammography, which is an x-ray imaging method 
used to examine a breast for early detection of breast cancer 
(NIBIB). A radiologist examines a mammogram to identify 
any potential abnormalities in the breast. Mammography has 
been shown to reduce breast cancer mortality by about 20% in 
high-resource settings (WHO). However, a mammogram is 
examined only by a radiologist. If it is not clear that the tumor 
is malignant or benign, there is a chance that the radiologist 
could give an inaccurate result. In one study, 100 mammo-
grams were submitted to nine radiologists. The diagnosis or 
suspicion of cancer varied from 10-55% (Devitt). The denser 
the breast, the more difficult it is to produce an image, so it 
will be harder to diagnose (NIBIB). Mammograms also use x-
rays, which means that patients are exposed to some radiation. 

 
The concept of machine learning has expanded in use into 

multiple fields, and it can be used to provide an early and pre-
cise diagnosis of a breast tumor. In this project, a program was 
developed to be able to use de-identified data that has already 
been verified by the University of Wisconsin to create an algo-
rithm that outputs the malignancy of the tumor and the accu-
racy of the prediction. This program creates a decision tree to 
predict if a tumor is malignant or benign. There are multiple 
advantages of using a decision tree algorithm. Decision trees 
are simple and easy to interpret. They require very little data 
preparation; unlike other machine learning algorithms, deci-
sion tree do not require normalization of data, creation of 
dummy variables, or removal of blank values. The cost of a 
using a decision tree is logarithmic in the number of data 
points used to train the tree (Scikit Learn). This means that the 
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more data points used, the more accurate the prediction is. 
Decision trees can handle both numerical and categorical vari-
ables. Decision trees also use a white-box model. Black-box 
algorithms utilize unknown mechanisms behind the scenes, 
whereas white-box algorithms are completely transparent. If a 
given situation is observable in a model, the explanation for 
the condition is easily explained by boolean logic (Scikit 
Learn). Decision trees are among the most accurate machine 
learning algorithms. The advantages of decision trees make 
them an appropriate algorithm to use for predicting the ma-
lignancy of breast tumors. Data collected from imaging of 
breast tumors can be used in a machine learning algorithm 
that utilizes decision trees to provide a prediction of the ma-
lignancy of a breast tumor. 

2 METHODS 
This project will use the Python programming language to 

develop a decision tree model that will predict whether or not 
someone who has had an ultrasound, mammogram, or MRI 
breast exam, has breast cancer. The model will utilize data 
from the University of Wisconsin. Each data point from the 
data set incorporates ten types of real-valued features that 
were computed for each breast mass: radius, texture, perime-
ter, area, smoothness, compactness, concavity, concave points, 
symmetry, and fractal dimension. The mean values of these 
features were computed for each tumor by the, resulting in 10 
types of attributes for each data point. The data will be in-
putted into the program, which will then analyze the data and 
use the Classification and Regression Tree (CART) algorithm 
to determine if a tumor is malignant or benign. The objective 
is that a user should be able to input the ten features men-
tioned and get a result. For someone to be able to use the pro-
gram to determine whether the tumor is malignant or benign, 
the patient should get a mammogram screening or ultrasound 
test to identify any abnormalities in the breasts and to measure 
the values of the ten types of features. The model could then 
use those ten types of attributes as an input and produce re-
sults that will identify the cells as malignant or benign and 
provide an accuracy of that prediction. A statistical analysis 
utilizing Point-Biserial Correlation Coefficients and t-tests 
could show which parameters actually have an association 
with malignancy of a breast tumor and how strong that asso-
ciation is (Fig. 4). 

 
2.1 The Classification and Regression Tree (CART) 

Algorithm 
CART constructs a binary decision tree in which one pa-

rameter is checked at each node of the tree. CART is used to 
perform a prediction of the classification of an object based on 
the object’s properties. Decision trees split the nodes of all 
available variables based on a target variable that will help 
determine the best split from that node. The nodes split until 
they reach a terminal node. A row of data can be inputted into 
this decision tree, and when it reaches a terminal node, a final 
prediction is returned and printed on the screen. The predic-
tion returned from a terminal node in the CART algorithm is a 
categorical variable. In this decision tree model, the categories 

for the class values are 0 and 1, where 0 is a prediction for a 
benign tumor and 1 is a prediction for a malignant tumor. 

2.2 Gini Index 
Gini index is the cost function used to evaluate splits in the 

dataset. A split in the dataset involves one input attribute (one 
explanatory variable) and one value (response variable) for 
that attribute. It can be used to divide training patterns into 
two groups of rows, where each group represents a list of val-
ues of one attribute. The Gini score shows how good a split is 
in one attribute by how mixed the class values are in the split 
of that attribute. A Gini score of 0 indicates a perfect split. 

 
The first step to calculating the Gini index is to calculate 

the proportion of class values in each group: 
 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑣𝑎𝑙𝑢𝑒
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠

            (1) 

 
Since there are only two possible class values, the sum of the 
proportion of group values that belong to class 0 and the pro-
portion of group values that belong to class 1 is equal to 1. So, 
1 minus the sum of all the squared proportions will yield the 
Gini index. Gini index is calculated for n values in the group: 

 
gini_index = 1 - ∑ 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖2𝑛

𝑖=1             (2) 

 
This Gini index value for each group must then be weighted 
by the size of the group. If a group has a larger size than other 
groups, it will have more influence on the overall Gini index. 
The calculation is done as follows: 

 
gini_index =( 1 - ∑ 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖2𝑛

𝑖=1 ) x 𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑒𝑠

                    

 (3) 

 
Finally, the Gini scores from each of k groups are added to 
give a final Gini index for a potential split point: 

 

gini_index =� (( 1 - �𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖2
𝑛

𝑖=1

) x 
𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑒𝑠
)

𝑘

𝑗=1

   

(4) 

 
This Gini index value can be used to evaluate a split. The 

closer it is to 0, the stronger the split is (0 is a perfect split). The 
calculateGiniIndex() (Fig. 7) function can calculate the Gini in-
dex given the groups and class values of those groups. This 
function is used to evaluate multiple different splits for a node 
in the decision tree; whichever group has the Gini index value 
closest to 0 will be set as a split point (node) in the decision 
tree. 

2.3 Node Split 
In order to form each node on the decision tree, all possi-

ble splits of the data for that decision node must be evaluated 
to see which split would be best for that particular node. This 
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uses the calculateGiniIndex() function to find the strength of a 
split based on the split point. The program must check all pos-
sible splits to determine which split yields the lowest Gini in-
dex. The splitGroup() function takes in three parameters: index 
of the attribute for the split, value of that attribute, and the 
dataset. It returns two arrays that are split from the dataset 
called “left” and “right.” “left” consists of all rows of data in 
which the attribute value in that row was less than the param-
eter value while “right” consists of all rows of data in which 
the attribute value in that row was greater than or equal to the 
parameter value. The getSplitBestNode() (Fig. 7) function takes 
the dataset as a parameter and calculates the Gini index of all 
possible splits, which are found using the splitGroup() func-
tion. It returns the split which has the Gini index value closest 
to 0 in the form of a dictionary, which contains the index, val-
ue, and group separation of that split. 

 

2.4 Terminal Nodes 
When building a decision tree, terminal nodes must be 

created to form a final prediction. Terminal nodes must be put 
in place to prevent overfitting. If a decision tree is to large and 
complex, it will fit the original dataset very well, but will falter 
once additional data is given to it. To deal with overfitting, 
conditions must be set to limit the size and complexity of the 
decision tree. This model has two conditions in which it labels 
a node in the decision tree as a terminal node. The first condi-
tion is that the tree has a maximum depth; if the tree reaches a 
certain depth, the node at the maximum depth will become a 
terminal node. The value of the maximum depth is stored in 
the max_depth global variable. The second condition is that 
each node has a minimum number of training patterns it is 
responsible for checking; if a node has lower than the mini-
mum number of training patterns, that node will become a 
terminal node. The value of the minimum number of training 
patterns is stored in the min_size global variable. After check-
ing these two conditions, the model must create a terminal 
node and make a prediction. This is done in the 
toTerminalNode() function, which checks a group of rows and 
returns the most common class value. This class value is the 
prediction; if the value is 0, the model predicts that the tumor 
is benign, and if the value is 1, the model predicts that the tu-
mor is malignant. 

 

2.5 Bulding the Decision Tree 
The first step to creating a decision tree is to create the 

root node and determine its split. The getSplitBestNode() func-
tion is first performed on the entire dataset to create the root 
node and to find the split which yields the lowest Gini index 
value. From there, recursion is used to create the decision 
nodes. The recursive process is done in the splitNode() (Fig. 7) 
function. The splitNode() function makes splits for a decision 
node or calls the toTerminalNode() function to create a terminal 
node. If the tree has reached its maximum depth or the node 
does not have at least the minimum number of required train-
ing patterns to check, the splitNode() function calls on 
toTerminalNode() to make a terminal node. Otherwise, 
splitNode() calls the getSplitBestNode() function to find the best 

split for that node, and then the splitNode() function is called 
recursively with the new left and right decision nodes created. 
This tree serves as the model for which predictions are made. 

 

2.6 Prediction 
The final step in classification is to predict if the tumor is 

malignant or benign. Given a row of data as an input, the pre-
dict() function uses the splitNode() function to navigate through 
the decision tree. Just like the splitNode() function, predict() 
uses recursion by calling itself with the new decision node. If 
the node has a dictionary, there is still another level of the de-
cision tree, so predict() continues the recursion process. Other-
wise, predict() can tell that it has reached a terminal node in the 
tree and will return the prediction. 

 

2.7 Prediction Accuracy 
Accuracy was calculated to determine the reliability of the 

CART algorithm used for the decision tree model. To calculate 
accuracy, the calculateAccuracy() function checks the prediction 
for each row of testing data with the actual result from that 
row. calculateAccuracy() returns the number of correct predic-
tions divided by the total number of predictions: 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

                          

(5) 

 
Cross validation was used to give a better measurement of 

accuracy. The data was split into separate subsets. The number 
of subsets was stored in the n_data_sets global variable. The 
testPredictiveModel() (Fig. 7) function loops through a list of 
these subsets. In every iteration, one subset was used as the 
test sample, while the remaining subsets were used as training 
samples for the decision tree model. This ensures that varia-
tions within the whole dataset can be accounted for when cal-
culating the accuracy of the model. Even though we know the 
results of the test samples, those results are not used in the 
model, so there is no bias introduced. The accuracies from 
each iteration were stored in the scores array. 
testPredictiveModel() returns the mean accuracy of all the sub-
sets. 

 

2.8 Statistical Analysis Using the Point-Biserial 
Correlation Coefficient and a t-test 
Statistical analysis was used to investigate which of the 

ten cellular features could be good indicators for malignancy 
of a breast tumor. The Python programming language was 
used to calculate the Point-Biserial Correlation Coefficients 
and t-values of each parameter in the University of Wisconsin 
diagnostic breast cancer dataset (Fig. 8). The Point-Biserial 
Correlation Coefficient is a value between -1 and 1, inclusive, 
that measures the strength of association between a continu-
ous variable and a binary variable. The closer the absolute 
value of the coefficient is to 1, the stronger the association. In 
this study, 10 different coefficients were calculated, one for 
each parameter. The feature was the continuous variable and 
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malignancy was the binary variable. The Point-Biserial Corre-
lation Coefficient, referred to as rpb, is calculated as follows: 
 
 

𝑟𝑝𝑏 =  𝑀1−𝑀0
𝑆𝑛−1 

 �
𝑛1𝑛0
𝑛(𝑛−1)

                 (6) 

 
where M1 represents the mean value of a parameter for all 
malignant tumors, M0 represents the mean value of a parame-
ter for all malignant tumors, n1 is the number of malignant 
tumors, and n0 is the number of benign tumors. sn-1 is the 
standard deviation of the parameter for all individuals in the 
sample: 

 

𝑆𝑛−1 =  �∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1
𝑛−1

            (7) 

 
 
A two-tailed t-test was used to test for statistical signifi-

cance of association between the parameters and malignancy. 
The null hypothesis is that there is no association between 
each of the parameters and malignancy. The alternative hy-
pothesis was that there is a correlation between each of the 
parameters and malignancy. The significance level selected 
was p < .05. Before the t-test can be performed, several condi-
tions must be satisfied. First, we need to check if the sample is 
random. While it is very likely that the samples from the Uni-
versity of Wisconsin are not random, it would be unethical to 
randomly select and assign breast cancer to people. Second, 
there must be independence. This can be checked by either 
seeing if there is replacement or by checking the 10% condi-
tion, which states that independence can be assumed if the 
sample size is less than 10% of the population size. The dataset 
from the University of Wisconsin has only 569 tumors, and 
there are certainly more than 5690 occurrences of tumors, so 
the 10% condition is satisfied, which means that independence 
can be assumed. Third, the Normal/Large Condition for sam-
ple means must be satisfied. If the population is normal, then 
the sampling distribution of sample means is also normal. If 
the population is not normal, the Central Limit Theorem says 
that the sampling distribution of sample means will be ap-
proximately normal in most cases if the sample size is greater 
than 30. Since the size of the dataset is 569, which is larger 
than 30, the Normal/Large Condition for sample means is 
satisfied, so a normal approximation can be used. 

 Since all three conditions have been met, the t-test can 
be used to test for statistical significance in the association be-
tween each of the ten features and malignancy. The t-value is 
calculated as follows: 

 

𝑡 = 𝑟𝑝𝑏�
𝑛1+𝑛0−2
1−𝑟𝑝𝑏

2              (8) 

 
 

n1 and n0 represent the number of malignant and benign tu-

mors, respectively. rpb is the Point-Biserial Correlation Coeffi-
cient that was calculated earlier. n1 + n0 - 2 is the degrees of 
freedom. The t-value calculated for each parameter was then 
used in the tcdf() function on a TI-84 Plus Silver Edition calcu-
lator. tcdf() takes in three parameters: a lower bound, an upper 
bound, and degrees of freedom. The p-value for each parame-
ter was calculated: 

 
 

𝑝 = 1 − 𝑡𝑐𝑑𝑓(−|𝑡|, |𝑡|, 567)            (9) 

 
 
The null hypothesis was rejected for a parameter if that pa-

rameter’s p-value was less than .05. If the null hypothesis was 
rejected, then there is sufficient statistical evidence that there is 
an association between that parameter and malignancy. 
 
 

3 RESULTS 
The decision tree model can return a prediction of whether 

the tumor is malignant or benign, given a row of data in which 
the ten parameters are radius, texture, perimeter, area, 
smoothness, compactness, concavity, concave points, sym-
metry, and fractal dimension, and the decision tree can also 
output the accuracy of the prediction (Fig. 2). An iOS mobile 
app (Fig. 5) was developed to provide a user interface to radi-
ologists or other specialists who can input the values of the ten 
parameters, which are then sent to the machine learning algo-
rithm to make a prediction and calculate the prediction accu-
racy. These results are sent back to the app, which displays the 
prediction and the prediction accuracy. Because data points 
were randomly chosen for the training and testing samples in 
the testPredictiveModel() function, accuracy was not the exact 
same every time. However, accuracy was consistently between 
90% to 93%. Printing the decision tree (Fig. 3) showed that 
concave points was the group used for the root node, meaning 
that the concave points group yielded the lowest Gini index of 
all groups. This could mean that of the ten parameters used, 
concave points could be the best indicator of whether a breast 
tumor is malignant or benign. When max_depth is set to be 5, 
not all the parameters are used for the model. The root node 
uses concave points, and the decision nodes use a variety of 
parameters: texture, area, concave points, radius, smoothness, 
perimeter, and concavity. However, compactness, symmetry, 
and fractal dimension were not included in the decision tree at 
all.  

 
The t-test, using the Point-Biserial Correlation Coefficient, 
showed which parameters had an association with malignan-
cy (Fig. 4). If p < .05, then the null hypothesis is rejected, show-
ing convincing statistical evidence that there is an association 
between the parameter and malignancy. Radius, texture, pe-
rimeter, area, smoothness, compactness, concavity, concave 
points, and symmetry had p < .05. Fractal dimension, on the 
other hand, did not accepted the null hypothesis. The features 
that had a relatively high Point-Biserial Correlation Coefficient 
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were concave points (rpb = 0.777), perimeter (rpb = .743), radius 
(rpb = .73), area (rpb = .709), and concavity (rpb = .696). 

4 DISCUSSION 
This decision tree model can be used to detect breast can-

cer in patients. Since this is only a prediction, this should not 
be the only means of determining if a breast tumor is malig-
nant or benign; however, it can give doctors a good sense of 
the severity of the tumor is harmful or not. If used at an early 
stage, the diagnosis from this model can help doctors take 
immediate action to address any possible malignant tumors. 
As there are 1.5 million women affected by breast cancer every 
year, this technology can help thousands of women get early 
treatment. 

 
While the project was geared toward breast cancer, this al-

gorithm can be applied to just about any problem which re-
quires binary classification. If a patient has a type of cancer 
that is not breast cancer, such as skin cancer, but the doctor 
has the ten parameters used in this project, they could use a 
similar program and would get results with very similar accu-
racy. Other scenarios of binary classification could use this 
model as well; the only parts of the code that would have to 
change are the processRawData() function, the name of the text 
file that has the data, and the lines of code that display the 
results. This algorithm provides an abstraction in the form of 
functions that a user could use to develop a machine learning 
program for binary classification. 

 
A possible next step is to add a random forest algorithm in 

addition to the CART algorithm. While CART uses only one 
decision tree, random forest uses multiple decision trees. In 
random forest, each of the trees will return a prediction of the 
class value. Whichever class value has the highest frequency 
will be the value that the program returns to the user. Random 
forest is incredibly efficient because it can handle data with 
many attributes and it can use dimensional reduction methods 
to remove variables that do not seem to have a strong associa-
tion with the class labels. The bar charts in Fig. 1 display the 
data for each feature. Dimensional reduction could be used to 
eliminate variables that do not show a strong association with 
the class values. For example, as seen in Fig. 1, malignant and 
benign tumors can both have low, medium or high fractal di-
mensions, so fractal dimension would not help predict the 
malignancy of a breast tumor. By forming multiple decision 
trees and limiting the features used in the model, random for-
est can improve the accuracy of the prediction algorithm. 

 
Another possible next step would be to pre-prune parame-

ters that either show no association or a very weak association 
with malignancy. When performing the t-test, it was found 
that fractal dimension did not achieve p < .05, so the null hy-
pothesis that there is no association is accepted. In addition to 
this, the |rpb| for fractal dimension was .013, again showing 
that there is a lack of association between fractal dimension 
and malignancy. While texture (rpb = .415), smoothness (rpb = 
.359), and symmetry (rpb = .33) all showed association with 

malignancy through the t-test, their rpb values are relatively 
low, so those associations may not be very strong. So, for mod-
ification of the current program, fractal dimension, symmetry, 
smoothness, and texture could all be pruned before execution 
of the CART algorithm. This would result in a decision tree 
that is solely based on parameters that show a relatively 
strong association with malignancy, potentially increasing 
prediction accuracy.  

 
 

 

5 APPENDIX 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1. Frequency of tumors by attribute (radius, texture, pe-
rimeter, area, smoothness, compactness, concavity, concavity 
points, symmetry, and fractal dimension). Red bars represent 

malignant tumors, and blue bars represent benign tumors. 
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Fig. 2. Output of machine learning program in Command 

Line 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3. Example of decision tree model with max_depth = 5, 
min_size = 10 (tree has a height of 5 with a minimum of 10 

training patterns at each decision node). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Statistical analysis using the Point-Biserial Correla-
tion Coefficient and a t-test. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. iOS mobile app allows a user to input the values of 
the 10 features of a breast tumor. 
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Fig. 6.  iOS mobile app returns prediction of malignancy 
and the accuracy of the prediction. 

 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Sample of functions used in machine learning algo-

rithm to build predictive model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

''' calculateGiniIndex() 

* This method calculates the Gini index for a split dataset 

* 

* @param groups - features of the object 

* @param classes - The possible labels of the groups 

''' 

def calculateGiniIndex(groups, classes): 

 # count all samples at split point 

 total_samples = float(sum([len(group) for group in groups])) 

 # sum weighted Gini index for each group 

 gini = 0.0 

 for group in groups: 

  size = float(len(group)) 

  # avoid dividing by zero 

  if size == 0: 

   continue 

  score = 0.0 

  # score the group based on the score for each class 

  for class_val in classes: 

   p = [row[-1] for row in group].count(class_val) / size 

   score += p * p 

  # weigh the group score by its relative size 

  gini += (1.0 - score) * (size / total_samples) 

 return gini 

''' getSplitBestNode() 

* This method selects the best split point for a dataset 

* 

* @param dataset - Data set that is inputted to find best split point 

''' 

def getSplitBestNode(dataset): 

 class_values = list(set(row[-1] for row in dataset)) 

 best_index, best_value, best_score, best_groups = 999, 999, 999, None 

 for index in range(len(dataset[0])-1): 

  for row in dataset: 

   groups = splitGroup(index, row[index], dataset) 

   gini = calculateGiniIndex(groups, class_values) 

   if gini < best_score: 

    best_index, best_value, best_score, best_groups = index,  

row[index], gini, groups 

 return {'index':best_index, 'value':best_value, 'groups':best_groups} 

''' splitNode() 

* This method creates child splits for a node or creates a terminal 

* 

* @param node - decision node of decision tree that is to be split into sub-nodes 

* @param max_depth - The maximum height of the decision tree 

* @param min_size - The minimum size of a decision tree 

* @param depth - Current depth of tree 

''' 

def splitNode(node, max_depth, min_size, depth): 

 left, right = node['groups'] 

 del(node['groups']) 

 # check for no split 

 if not left or not right: 

  node['left'] = node['right'] = toTerminalNode(left + right) 

  return 

 # check for max depth 

 if depth >= max_depth: 

  node['left'], node['right'] = toTerminalNode(left), toTerminalNode(right) 

  return 

 # process left group 

 if len(left) <= min_size: 

  node['left'] = toTerminalNode(left) 

 else: 

  node['left'] = getSplitBestNode(left) 

  splitNode(node['left'], max_depth, min_size, depth+1) 

 # process right group 

     

     

  

     

      

# Evaluate an algorithm using a ten-fold cross validation split 

''' testPredictiveModel() 

* This method splits the data into sets and returns the mean accuracy of the model 

* 

* @param train - training data 

* @param test - testing data 

* @param max_depth - Maximum depth of the tree 

* @param min_size - minimum size of the tree 

''' 

def testPredictiveModel(dataset, random_set_splits, max_depth, min_size): 

 scores = list() 

 sets = splitData(dataset, random_set_splits) 

  

 for random_set in sets: 

  train_set = list(sets) 

  train_set.remove(random_set) 

  train_set = sum(train_set, []) 

  test_set = list() 

  for row in random_set: 

   row_copy = list(row) 

   test_set.append(row_copy) 

   row_copy[-1] = None 

 

  predictions = testPredictions(train_set, test_set, max_depth, min_size) 

  actual = [row[-1] for row in random_set] 

  accuracy = calculateAccuracy(actual, predictions) 

  scores.append(accuracy) 

 

 return (sum(scores)/float(len(scores))) 

''' 
Note: All arrays printed show calculations for the parameters in the following order: 
Radius, Texture, Perimeter, Area, Smoothness, Compactness, Concavity, Concave points, 
Symmetry, Fractal Dimension 
''' 
 
import math 
 
'''Returns values of variables used in other calculations''' 
def setup(): 
    name = "breast_cancer_data.txt" 
    file = open(name, 'r') 
    count = 0 
    benignCount = 0 
    malignantCount = 0 
    tumors = list() 
    benignMeans = list(0 for i in range(0,10)) 
    malignantMeans = list(0 for i in range(0,10)) 
    means = list(0 for i in range(0,10)) 
 
    for line in file: 
        line = line.split(',') 
        tumor = [float(line[2]), float(line[3]), float(line[4]), float(line[5]),  

   float(line[6]), float(line[7]), float(line[8]), float(line[9]),  
   float(line[10]), float(line[11]), line[1]] 

        tumors.append(tumor) 
        count += 1 
 
    for tumor in tumors: 
        if tumor[len(tumor)-1] == "M": 
            malignantCount += 1 
            for i in range(0,10): 
                malignantMeans[i] += tumor[i] 
        elif tumor[len(tumor)-1] == "B": 
            benignCount += 1 
            for j in range(0,10): 
                benignMeans[j] += tumor[j] 
        for k in range(0,10): 
            means[k] += tumor[k] 
 
    for b in range(0,len(benignMeans)): 
        benignMeans[b] /= benignCount 
        
           
        
           
 
           

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018                                                                                           2072 
ISSN 2229-5518  
 

IJSER © 2018 
http://www.ijser.org  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.  Python code used to calculate Point-Biserial Correla-

tion Coefficients and t-values. 
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'''Calculates standard deviation of a dataset''' 
def stdev(nums, average): 
    diff = 0 
    for n in nums: 
        diff += (n - average)**2 
    return math.sqrt(diff/(len(nums)-1)) 
 
'''Calculates Point-Biserial Correlation Coefficient of a parameter''' 
def rpb(): 
    n0, n1, bm, mm, meanList, tumorList = setup() 
    n = n0 + n1 
    rpbs = list() 
 
    for i in range(0, len(bm)): 
        m1 = mm[i] 
        m0 = bm[i] 
        mean = meanList[i] 
 
        paramList = list(tumorList[j][i] for j in range(0,n)) 
        sd = stdev(paramList, mean) 
 
        rpb = ((m1-m0)/sd) * math.sqrt((n1*n0)/(n*(n-1))) 
        rpbs.append(rpb) 
 
    print("rpb: ") 
    print(rpbs) 
    print(' ') 
    return rpbs, n0, n1 
 
'''Calculates the t-value of a parameter''' 
def t(): 
    rpbList, n0, n1 = rpb() 
    ts = list() 
    for r in rpbList: 
        dof = n0 + n1 - 2 
        denom = 1 - r**2 
        t = r * math.sqrt(dof/denom) 
        ts.append(t) 
 
    print("t-values: ") 
    print(ts) 
    
print("\nStatistical Analysis of University of Wisconsin Diagnostic Breast Cancer Dataset:") 
print("---------------------------------------------------------------------------------\n") 
print("Note: All arrays printed show calculations for the parameters in the following order: 
Radius, Texture, Perimeter, Area, Smoothness, Compactness, Concavity, Concave points, 
Symmetry, Fractal Dimension\n") 
 
t()  
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